
Optimizing
Demand Response
Management Systems
How to Control High Volumes of Two-Way Communicating Devices

CONTENTS

Introduction ...2

Determining What to Test ...2

Setting Up Testing Data ..3

Simulating Devices ...4

Executing Tests...4

Measuring Results ..5

Results ..6

WHITE PAPER

INTRODUCTION

The emergence of two-way controllable devices has opened up
a wealth of possibilities for utilities and their customers. It has
enabled customers to adjust the temperature of their home from
thousands of miles away while giving utilities precise forecasting
of demand response capacity. It has also brought technological
challenges to vendors communicating with thousands of devices.
At Itron, we take great pride in the ability of IntelliSOURCE®
Enterprise™ to deliver large-scale demand response programs for
our clients and it was essential that our system deliver the same
results for programs that used modern two-way devices as it did
for legacy one-way paging devices. We recently completed a
project to analyze how effi ciently we communicate with devices
and how we could optimize our performance. In this series of three
blog posts, we examined the process we took to test our system,
the results we obtained and some lessons learned.

Here’s a bit more background. Traditional paging networks are
able to send the same single message to ten thousand devices
just as simply as sending to ten devices. Besides being costly to
install and maintain, the downside of those networks is that they
do not provide real-time feedback from the devices1. Two-way
devices solve that problem and most (including all Wi-Fi devices)
are IP addressable. The downside of IP addressing is that every
device must be sent a unique message so controlling ten thousand
devices takes 9,990 more messages than controlling ten devices.

Some demand response management systems (DRMS) work by
breaking up load into large groups (treating ten thousand thermostats
like a large industrial facility), determining which groups to control,
then sending a proprietary or OpenADR signal to a different system
that actually communicates with devices. Itron’s IntelliSOURCE
Enterprise coupled with our IntelliTEMP® DirectLink™ and
IntelliPEAK® DirectLink™ two-way devices has the more complex
job of actually sending those messages to the ten thousand
individual devices. The benefi t of this approach is greatly improved
forecast granularity and the fl exibility for surgical event dispatch.

1 These devices also do not provide customer engagement
 functionality and are limited to a utility direct install channel.

DETERMINING WHAT TO TEST

The fi rst question we asked was “what is our goal?” The answer,
of course, depends on your exact business need. Working with
our customers, we reached a goal of initiating a demand response
event, selecting the devices to control, sending messages to
100,000 devices and receiving the two-way acknowledgment
in less than 120 seconds. Future testing will scale to 500,000 –
1,000,000 devices. We had a very specifi c and measurable goal,
but it doesn’t take into account the larger picture.

The Itron IntelliSOURCE Enterprise DRMS is used by more than
just control room operators. Device installers use the system
to manage their daily work. Customer support specialists use
the system to answer customer questions. Measurement and
verifi cation specialists use the system to gather and process device
telemetry. We needed to determine what other areas of the system
would be in use that could have an impact on the performance.

We began by analyzing the production web logs to profi le what
actions were being taken by users. We also looked at the logs
from the application’s background processes. We concentrated
on those executed around the time demand response events
were called and those with longer run times. This gave us a good
starting point, but it was diffi cult to determine the performance
impact of each action we were seeing in the log.

Next we used tcpdump to capture the raw network traffi c between
our application and its MySQL® database. We then used Percona’s
pt-query-digest to analyze the captured data. This approach gave
us more insight into the system’s behavior than MySQL’s standard
logging toolset with zero downtime or impact to our customer. The
results of pt-query-digest allowed us to easily see the frequency
and execution time of different database queries and to understand
the impact of different system actions.

Putting this all together, we came up with our test script:

 » Execute a demand response event sending messages to a
rotating portion of the population

 » Process the two-way telemetry received from the devices

 » View the real-time status of devices acknowledging the demand
response event

 » View the real-time system status and forecasted capacity

 » Process multiple device installations, registrations and
commissionings

Counts of production web requests used to determine test steps

0

1000

2000

3000

4000

5000

6000

7000

SETTING UP TESTING DATA

The second question we asked was “how do we set up our data?”
This is a very important question. It is drastically different to test
100,000 devices all in a single load control group versus one
hundred thousand groups each with one device. Both are valid,
interesting tests and both will produce wildly different results and
optimizations. We again worked with our customers and their data
to profi le not just how their data was set up today, but also how
they planned to expand in the future. Ultimately, we created 7,000
groups with different numbers of devices based on the profi les.

Just as testing the demand response event creation alone was
not enough, simply creating 100,000 devices is not enough. By
using our analysis of operations, we identifi ed the objects in our
data model that have an impact on our performance. We added to

our test system over 2,000,000 prospective customers, 750,000
legacy one-way devices and 5,000 weather readings. The scripts
that we created will help us in the future scale to 500,000 –
1,000,000 devices.

It’s worth repeating the importance of setting up the test data
correctly. There will always be an easier or simpler way to set up
the data, but getting this part wrong can completely invalidate
testing. For example, we saw a signifi cant slowdown when iterating
over a hash table of a certain type of device group. This type of
group was part of the production system but not being used in
the demand response events. It would have been easy to ignore.
However, by setting up the test data correctly, we were able to
move from a hash table to a set and see a dramatic improvement in
our performance.

SIMULATING DEVICES

Since we don’t have 100,000 extra IntelliTEMP
DirectLink smart thermostats lying around
for our performance testing, we built a
software simulator to mimic an individual
device and a testing harness that allowed
us to easily launch thousands of simulators.

We again looked at the data in our production
systems to identify the key functionality
to simulate. Certainly, connecting to our
server was important, but we also knew
that devices do not stay connected
100% of the time. So we built in a variable
disconnect rate and distributed simulators
based on the
observed behavior of deployed devices.
Receiving and acknowledging messages
are also core functionality, but not all
devices respond immediately. So we built
in a variable lag rate and distributed
simulators again based on the observed
behavior of deployed devices. Lastly, we
built functionality for the simulators to push
our periodic telemetry information along
with demand response status messages in
the same manner as our deployed devices.

To implement the device simulators, we
turned to the Erlang VM. Erlang’s inherent
parallelism and ease of scaling made it an
ideal choice to run thousands of messaging
based simulators. We also developed a test
harness, also built in Erlang, to launch and
monitor the simulators. The test harness
ran simulators based on details2 from a
confi guration fi le that was generated
automatically from our test data and
distribution profi les. This gave us tens of
thousands of simulated thermostats and
load control switches, each with individual
characteristics based on observations from
our real-world devices.

EXECUTING TESTS

With our test steps defi ned, test data
created and device simulators implemented,
we could begin our actual testing. We began
by building an automated script to repeatedly
and consistently execute our test steps.
These scripts executed the test steps either
by mimicking a series of user web requests
or by accessing existing IntelliSOURCE
Enterprise APIs. To help us monitor the
tests, the scripts pushed intra-test logging
and preliminary results into our Slack
channel.

So that we could understand the
performance trend as we scaled, we
started our tests with 25,000 devices and
progressively built our way up to our goal
of 100,000. In the future, we’ll scale to
500,000 – 1,000,000 devices. We built
additional scripts that allowed us to
automatically add simulated devices3 to
our test environments. Removing devices
proved more complicated, so we saved
system snapshots before adding more
simulated devices.

While our test script ensured we executed
our tests in a consistent and repeatable
manner, we observed identical test cycles.
The interactions of unrelated components
(from the application layer to the testing
tools to the physical hardware) and the
intentionally created randomness (different
devices targeted for demand response,
distributed lag rates, etc.) both contribute to
differences in results. While this variability
can be frustrating, successful performance
testing must embrace (or at least accept)
it. We managed the variability by executing
our tests numerous times, ultimately ending
up with more than 250 test cycles and over
1,500 data points.

Distribution of simulated
device attributes

0.4% chance of disconnection

1.0% chance of disconnection

2.5% chance of disconnection

10% chance of disconnection

2.5% chance of disconnection

0.4% chance of disconnection 1.0% chance of disconnection

10% chance of disconnection

2 Credentials, disconnect rate, lag rate, telemetry frequency, etc.
3 In addition to devices, our script added the associated accounts,
 premises and enrollments managed by the IntelliSOURCE
 Enterprise DRMS.

MEASURING RESULTS

One of the benefi ts of two-way devices is knowing exactly which
device received a message and the time the message got to the
device. This information is stored in IntelliSOURCE Enterprise and
formed the basis of our measurement. For example, we recorded
when outgoing messages were created and when responses from
each device were stored in the database. We began with manually
executed SQL queries and analysis in Excel. This was cumbersome,
but gave us a great way to iterate our queries and experiment
with different presentations. Once we were happy with our
measurement, we built a simple Ruby on Rails application to
automatically fetch data, perform analysis and produce reports for
each test event. A huge benefi t of this investment is that it can be
applied to measure how our customer’s production systems are
currently performing.

We followed a similar approach to our log fi le analysis. We began
with standard UNIX® tools to parse the logs and Excel to perform

analysis. This evolved into a set of custom Splunk reports and
dashboards enabled by automatic log forwarding.

One of the key items that both our custom measurement
application and Splunk provides is data visualization. Meaningful
data visualization is invaluable when comparing different test
cycles, uncovering performance issues and communicating with
others. Meaningful data visualization is also hard; it requires strong
knowledge of the application to determine what to present and
patience to experiment with the best way to present it. Throughout
our analysis we used column charts, scatter charts, pie charts and
candlestick charts to help us answer different questions.

In the data on the next page, there is a series of slowly changing
numbers that don’t lead us to any conclusions. However, by
looking at the graph we could see a gap in outgoing messages
for period of time. This helped identify a bottleneck within our
message broker’s disconnect process.

0 100

Effective data visualizations expose patterns
that are diffi cult to discern in raw measurements

200 300 400 500 6000 100 200 300 400 500 600

While Itron strives to make the content of its marketing materials as timely and accurate as possible, Itron makes no claims, promises,
or guarantees about the accuracy, completeness, or adequacy of, and expressly disclaims liability for errors and omissions in, such
materials. No warranty of any kind, implied, expressed, or statutory, including but not limited to the warranties of non-infringement of third
party rights, title, merchantability, and fi tness for a particular purpose, is given with respect to the content of these marketing materials.
© Copyright 2017 Itron. All rights reserved. 101564WP-01 07/17

Join us in creating a more resourceful world.
To learn more visit itron.com

CORPORATE HQ
2111 North Molter Road
Liberty Lake, WA 99019 USA

Phone: 1.800.635.5461
Fax: 1.509.891.3355

RESULTS

At the end of this project, we demonstrated that with 100,000
DirectLink devices the IntelliSOURCE Enterprise DRMS can
calculate which devices to include in a demand response event,
send messages to each device and receive two-way acknowledgments
from all of the devices in under 100 seconds. This result met our
goal and has surpassed all of our customer’s service level agreements.
It also gives us a great foundation as we continue to scale to
500,000 – 1,000,000 devices.

No performance testing effort would be complete without fi nding
and fi xing a few bottlenecks:

 » Optimizing data structures. While newer programming
languages have made it easier and more enjoyable to write code,
they have also made it easier to write code that performs poorly
(especially at large scale). Refactoring data structures by focusing
on the most effi cient type for each use case yielded signifi cant
performance impacts.

 » Optimizing SQL queries. This is one of the fi rst places people
look when addressing performance concerns. We found some
performance increases by simply changing SQL queries
(particularly by removing IN clauses), but the real payoff was
denormalizing specifi c parts of the schema to make the queries
signifi cantly simpler4.

 » Separating and buffering operations. It’s natural to
implement a single functional requirement (receive and store
telemetry) as a single process. However, at large scale, a delay in
one operation (storing telemetry) can impact the other operation
(receiving messages). Separating those operations into multiple
processes connected by a queuing5 mechanism can alleviate
this bottleneck.

Lastly, we’ve been able to build a framework for testing our
solutions in an environment that more closely resembles our
customers’ production systems. This is an important addition to
our existing automated unit and integration tests. We’ve already re-
used that framework for other projects within Itron and are excited
to continue enhancing it.

For more information, please visit our IntelliSOURCE
Enterprise webpage.

4 The tradeoff is that we are storing more data.
5 We’re using Redis.

